
Instruction Formats
- 3 types: R-format (register format), I-format (Immediate format), and J-format (Jump format)
- Each 32 bits long
- OPCODE always in bits 26-31 (6 bits wide)
- these 6 bits are sufficient to tell the hardware what we want it to do
- The remaining 26 bits are used for operands for those commands
- The type of format that we use is largely dependent on the operands that we have to use for

that instruction

R-format (Register format)

I-format (Immediate format)

- Contains:
• operation code (6 bits)
• 3 register fields (5 bits each)
• shift amount field (5 bits)
• function code (6 bits)

OP RT RD ShAmt FCT

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

RS

rr.sc: first source register
second source register
destination register

> 000000 for R-type instructions

rd:

* eg: add, sub, and, or, slt, sld, srl

- Only format that can handle having 3 registers
- will frequently have 2 inputs coming from registers, and a third register as a destination
- Useful for a lot of arithmetic instructions
- Sh Amnt will only be used for shift instructions, otherwise it will be set to 0
- FCT gives us a way to control what the ALU is doing

- Contains:
• OPCODE (6 bits)
• 2 register fields (5 bits
• Immediate (16 bits)

each)

RS RT Immediate

6 bits 5- bits 5 bits 16 bits

OP

rs: source register
rt: destination register

* eg: addi, lw, sw, beg, bne, set

Used for Add Immediate (addi) instruction where we add some constant value
to the contents of a register and store the result in a different register

- used for load and store instructions, where we have a base address in a register,
a constant offset that we put in the instruction, and then some other register that
we want to write to

- Branch instructions use the immediate field for a PC-relative offset:
the immediate field tells us how far backwards or forwards we want to go from
our current position

↳

eg: addi (add immediate)

addi $ so, $+1 , -24

A: contents of an address field in the instruction

Immediate Addressing (MIPS uses it)

Addressing Modes

$50 ← $+1 - 24

A

ori $50, $+1, Ox ABOS

$ 50 ← $+1 / OXABOS

bitwise or immediate

• Other I-type instruction

opcode is ✓

♂"" "

immediate

16 bits

Direct Addressing (MIPS doesn't use it)

DATA

MM (main memory)
A The address field A in

the instruction directly specifies

the memory location

where the data is stored

Indirect Addressing (MIPS doesn't use it)

A

EA

DATA

MM
The address field A in the instruction does not

contain the actual data's memory location.
Instead, A holds a memory address where the
effective address (EA) is stored. The processor
first retrieves the EA from this memory location,
then uses it to access the actual data in
main memory.

- The instruction contains a register
number that holds a memory address.

- The processor fetches the effective
address from the specified address
in the register file.

- The processor uses this EA to access memory and retrieve data

Register Addressing

R#

DATA

Register file

rs

(MIPS uses it)

00101
Register Number

opcode rst v52 rd 5ft" fat

add $51, $+1, $ to # $51 ← $+1 + $ to

- the instruction contains a Register number
- the processor retrieves the data from the specified register in the register file
- this eliminates the need to access memory, improving speed

Register Indirect Addressing

Address

REG file
MEM

DATA

R#

A

(MIPS doesn't use it)

EA

- The base register holds a memory address
- The offset is a signed immediate included in the instruction

- The processor computes the target address (TA) by adding the
offset to the value in the base register

- the TA is then used to access memory

Base-Register Addressing Displacement Addressing) (MIPS uses it)

eg: lw $+1, 24 ($50) #load

Used for lw and sw

A

rs
opcode

rt offset
in bytes

T.A. = Base Address + offset (target address)

REG file

Base
Address t

T. A.

(effective
address

. MM

DATA

E x a m p l e

Consider an instruction. The address field of the instruction contains the value 2000.
When needed, register #18 is used. Register 18 contains the value 1600.
The list below shows a few addresses and the memory content of each of those addresses.

1 2 0 0
3 0 0 0

R E G # 1 8

1 6 0 0 .
3 6 0 0

2 0 0 0
3 0 0 0

1 2 0 0
1 6 0 0

4 0 0
5 0 0

W e ' l l r e f e r t o t h e c o n t e n t o f t h e a d d r e s s f i e l d o f t h e i n s t r u c t i o n a s A

- I m m e d i a t e : A i s 2 0 0 0 , g r a b i t i m m e d i a t e l y

- D i r e c t : A i s 2 0 0 0 , a n a d d r e s s o f a m e m l o c a t i o n t h a t c o n t a i n s

o u r d a t a ⇒ 3 0 0 0

- I n d i r e c t : A i s 2 0 0 0 , a n a d d r e s s o f a m e m l o c a t i o n t h a t c o n t a i n s

a n a d d r e s s (3 0 0 0) o f a m e m l o c a t i o n t h a t c o n t a i n s o u r d a t a ⇒ 1 2 0 0

- R e g i s t e r : u s e s t h e r e g i s t e r n u m b e r g i v e n i n t h e i n s t r u c t i o n (1 8) w h i c h

c o n t a i n s o u r d a t a ⇒ 1 6 0 0

- R e g i s t e r I n d i r e c t : u s e s t h e r e g i s t e r n u m b e r g i v e n i n t h e i n s t r u c t i o n (1 8)

w h i c h c o n t a i n s a n a d d r e s s (1 6 0 0) o f a m e m l o c a t i o n t h a t c o n t a i n s
o u r d a t a ⇒ 4 0 0

- D i s p l a c e m e n t : E A = (v a l u e i n b a s e r e g i s t e r) + (o f f s e t f r o m i n s t r u c t i o n)

= V a l u e i n r e g i s t e r # 1 8 + o f f s e t o f 2 0 0 0

= 1 6 0 0 + 2 0 0 0 = 3 6 0 0 ⇒ A D D R 3 6 0 0 c o n t a i n s o u r d a t a

⇒ 5 0 0

