

Create a $2^2 \times 1$ MUX that implements the function $f(x, y, z) = x'y + y'z'$ using yz as control lines. Provide the Mux's output expression

1) Draw the binary table for xyz

Table 1

	x	y	z
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

2) Decompose the variables of $x'y + y'z'$ into their literal numeric values:

$$x'y + y'z'$$

$\downarrow \downarrow \downarrow \downarrow$

$$0 \ 1 \ 0 \ 0$$

\Rightarrow Find the rows in the table where:

$$x \text{ and } y \text{ equal } 0 \ 1$$

$$y \text{ and } z \text{ equal } 0 \ 0$$

3) Draw a table with headers for all the MUX inputs. Since the MUX is a 4×1 , then it will have 4 inputs: $I_0 \dots I_3$

Table 2

	I_0	I_1	I_2	I_3
x'	0	1	2	3
x	4	5	6	7

\Rightarrow rows in table 1 where x is 0
 \Rightarrow rows in table 1 where x is 1

According to the problem statement, y and z will be used for the **select lines**, so the remaining variables, x in this case, will be used for the inputs to the MUX.

So if we take a look at table 1, we identify all the values where x is 0 and x is 1

When x is 0, we can represent it as x'

When x is 1, we can represent it as just x

4) In table 2, circle all the row values that correspond to the numeric values we determined in step 2

	I_0	I_1	I_2	I_3
x'	0	1	2	3
x	4	5	6	7
	1	0	x'	x'

5) Designate a value for I_n depending on what is being circled:

- If all numbers in the column for I_n are circled, then:

$$I_n = 1$$

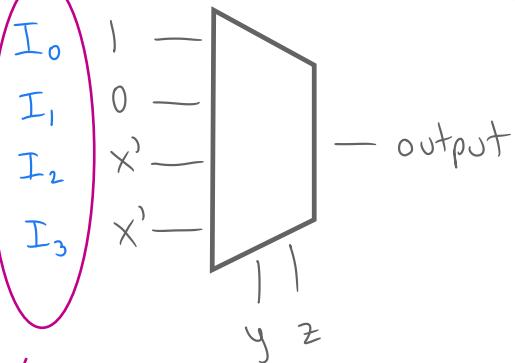
- If no numbers are circled:

$$I_n = 0$$

- If only one or a few are circled, then I_n is assigned an expression that corresponds to the variable of the row in which the circled number is in:

e.g. In table 2, the number 2 is circled in row x' , so $I_2 = x'$
and likewise, $I_3 = x'$

6) Draw the MUX:



7) Finally, we write the output expression of the MUX, which will be a sum of minterms, where each minterm will contain an I_n variable.

$$I_0yz + I_1yz + I_2yz + I_3yz$$

00 01 10 11

This is just the skeleton of the expression. The numbers in blue are designating numeric values to yz , counting upwards.

For the actual expression, we will negate y and z in accordance to these numbers:

$$I_0y'z' + I_1y'z + I_2yz' + I_3yz$$

Substitute the I_n terms with their corresponding value:

$$(1)y'z' + (0)y'z + x'yz' + x'yz = \boxed{y'z' + x'yz' + x'yz}$$