Queens College of CUNY
Department of Computer Science
Programming Languages
(CSCI 316)

Winter 2026

Midterm Info

The Midterm Exam will take place on Tuesday, January 13 in our classroom SB B145.

The material for the exam is Chapters 1-7 (even if we likely do Chapter 8 before the Midterm). You are also
responsible for takeaways from our assignments. (While you are not expected to write some of the complex programs

used in class, you should understand the outputs that we discussed and analyzed.)

There will be eight (mult-part) questions, worth 13 points each, with approximately one associated with each chapter.

The question on Chapter 2 - "Evolution of Major Programming Languages", but also related to the course as a whole,
will give you representative code snippets in various languages and ask you to identify the language and what

feature(s) you observed that led to that identification.

There will also be a question on the Chomsky hierarchy of "formal languages" and knowing which types are most

applicable to our study of "programming languages" and why.

Grammar - Languages + Recognizing automaton ¢

Production rules
(constraints)@

Recursively

Type-0 Turing machine ¥ — « (y non-empty)

enumerable

Linear-bounded non-

Type-1 Contexi-sensitive Af —
= deterministic Turing machine o2
Non-deterministic pushdown
Type-2 Context-free A= o
automaton

A—a
A — aB (right regular)

Type-3 Reqgular Finite-state automaton or

A—a
A — Ba (left regular)

Type-0 grammars, known as "Unrestricted Grammars": (V U Z)"— (V U 2)*

Examples(®I[E] s

L = {w | w describes a terminating
Turing machine }

L={a"b"c" | n>0}

L= {a"b" | n >0}

L={a"|n>0}

Type-1 grammars known as "Context-Sensitive Grammars" : V U Z)"— (V U X)* - always increasing in size
Type-2 grammars, known as "Context-Free Grammars" (CFG): V — (V U 2)*

Type-3 grammars, known as "Regular Grammars":V — ¥ | ¥V

* i"Kleene closure" means 0 or more copies
+ "positive closure" means 1 or more copies

https://en.wikipedia.org/wiki/Chomsky_hierarchy

You should also be familiar with the state-diagrams used to describe language-constructs (e.g. JSON) and how they
relate to the production rules of grammars.

object
object ~ whitespace —(D—

r , whitespace string

L whitespace —O— value —<
J

.

<object> — { <whitespace>} |

{ <whitespace> <key-value-pair>} |

{ <whitespace> <key-value-pair> <kv-pair-var>}
<kv-pair-var>— , <whitespace> <key-value-pair> <kv-pair-var> | A
<key-value-pair> — <string> <whitespace> : <value>
<whitespace> —

https://www.json.org/json-en.html

	Queens College of CUNY
	Department of Computer Science
	Programming Languages
	(CSCI 316)
	Winter 2026

