Queens College of CUNY
Department of Computer Science
Programming Languages
(CSCI 316)

Winter 2026

Assignment #10
"Concurrency"
Due: January 18, 2026

Intr ion:

In this assignment, we consider "concurrency”, the ability to run "simultaneous" execution of multiple tasks / threads.
You are given code for a mult-threaded Merge Sort, and asked to make some modifications.

After Merge Sort works, repeat the exercise for Quick Sort and 3-Way Merge Sort

Question: does the muli-threading make it slower or faster? Is there a "depth" that is optimal?

Submissions:

In the Google form, please submit:

e Assignmen10.py (source code in Python or another language of your choice)
e Assignment10.txt (console output from your program execution)

Tasks:

[1] Create a new Python program Assignment10.py (or one in another language of your
[2] Start with this code below:
from concurrent.futures import ThreadPoolExecutor

def merge (left, right):
result = []
i=3=0
while i < len(left) and j < len(right):
if left[i] <= right[j]:
result.append (left[i])
i +=1
else:
result.append (right[]j])
Jo+=1
result.extend (left[i:])
result.extend (right[j:])
return result

def mergesort (arr, max_depth=8):
if len(arr) <= 1:
return arr
mid = len(arr) // 2
left = arr[:mid]


http://assignment10.py

right = arr[mid:]
if max depth > 0:
with ThreadPoolExecutor (max workers=2) as executor:
left future = executor.submit (mergesort, left, max depth-1
right future = executor.submit (mergesort, right, max depth-1)
left sorted = left future.result()
right sorted = right future.result()
else:
left sorted = mergesort (left, 0)
right sorted = mergesort (right, O0)
return merge (left sorted, right sorted)

def main():
data = [38, 27, 43, 3, 9, 82, 10, 5, 1, 99, 17]
sorted data = mergesort (data)
print (sorted data) # comment after initial testing

if name == " main ":

main ()
[3] Modify the code to use a random list of size n instead of the hard-coded list
[4] Add and call this code to show the threads
import threading
def show threads():
threads = threading.enumerate ()
print (f"Active threads: {len(threads)}")
for t in threads:

print (f"Name={t.name}, Ident={t.ident}, Alive={t.is alive()}, Daemon={t.daemon}")

[5] Modify the code to time it - get the time() before and after and subtract. (When timing, disable the prints which will
skew the timing results.)

[6] Compare the performance for difference "depths", including 0 (= No threading)

[7] Repeat this entire exercise for Quick Sort



