
Queens College of CUNY
Department of Computer Science

Programming Languages
(CSCI 316)

Winter 2026

Assignment #9
"Subprogram Scoping Simulation"

Due: January 17, 2026

Introduction:

In this assignment, we simulate the "call stack" of subroutines to illustrate the state of variables and parameters passed by
value and by reference. We are also interested in contrasting Static (Lexical) Scoping in which variable lookup follows
the static link (parent) chain vs. Dynamic Scoping io which variable lookup follows the call chain.

The following two tables may be helpful:

Aspect Caller Parent

Definition The specific subprogram that initiates
the execution of another subprogram at
a given point during runtime.

The subprogram whose code block immediately
and statically contains the definition of a nested
subprogram in the source code.

Relationship A dynamic relationship. It changes with
each invocation. The same subprogram
can be called by many different callers.

A static (lexical) relationship. It is fixed at
compile time by the source code structure. A
subprogram has only one static parent.

Purpose Control flow and execution stack
management. The caller is suspended
while the called subprogram executes,
and control returns to the caller upon
completion.

Scoping and variable access (referencing
environment) in languages that allow nested
subprograms. A nested subprogram can
typically access the non-local variables declared
in its static parent's scope.

Mechanism The connection is managed by a
dynamic link (return address and saved
execution status) on the call stack.

The connection is managed by a static link (a
pointer to the parent's activation record
instance) in languages that use static scoping
with nested functions.

Feature Static (Lexical) Scoping Dynamic Scoping

Determination Compile-time (based on code's
physical nesting).

Runtime (based on call stack order).

Variable Lookup Finds the closest enclosing
declaration in the source code.

Finds the most recently active declaration in
the call stack.

Predictability Highly predictable; easier for humans
to reason about.

Less predictable; can change with different
call sequences.

Implementation Compiler uses symbol tables to map
names to scopes.

Interpreter/runtime uses linked lists/stack for
bindings.

Example In f() calling g(), g's x is found in f's
scope (if nested).

In f() calling g(), g's x could be from f or an
outer scope, depending on who called f.

Usage Most modern languages (C, Java,
Python, etc.).

Older Lisps, some shell

Submissions:

In the Google form, please submit:

●​ Assignment09.py (source code - MODIFIED FOR DYNAMIC SCOPING)
●​ Assignment09.py (console output for both static and dynamic scoping)

Tasks:

[1] Use the code below to illustrate "static (aka lexical) scoping". Understand the goals and structure.

[2] Modify the code to use "dynamic scoping" that is, when resolving a variable name, look in the current frame, and if not
found, follow the dynamic link (caller) chain instead of the static link (parent)

from dataclasses import dataclass

---------- core runtime ----------
@dataclass
class Cell:
 value: int

@dataclass
class Frame:
 name: str
 parent: "Frame | None" # static link (lexical parent)
 caller: "Frame | None" # dynamic link (caller)
 env: dict # name -> Cell

class Runtime:
 def __init__(self, debug: bool = False):
 self.debug = debug
 self.stack = [Frame("GLOBAL", None, None, {})]

 def _dbg(self, msg: str) -> None:
 if self.debug:
 print(f"[DBG] {msg}")
 print(self.dump_stack())

 def dump_stack(self) -> str:
 lines = ["STACK (top last):"]
 for i, fr in enumerate(self.stack):
 env_view = {k: v.value for k, v in fr.env.items()}
 lines.append(
 f" [{i}] {fr.name} "
 f"dyn={fr.caller.name if fr.caller else None} "
 f"stat={fr.parent.name if fr.parent else None} "
 f"env={env_view}"
)
 return "\n".join(lines)

 def top(self) -> Frame:
 return self.stack[-1]

 def declare(self, name: str, value: int) -> None:
 self.top().env[name] = Cell(int(value))

 self._dbg(f"declare {name}={value} in {self.top().name}")

 def lookup_cell(self, name: str) -> Cell:
 fr = self.top()
 hops = 0
 while fr is not None:
 if name in fr.env:
 if self.debug:
 self._dbg(f"lookup {name} found in {fr.name} (static hops={hops})")
 return fr.env[name]
 fr = fr.parent # static chain lookup
 hops += 1
 raise NameError(f"Undefined name: {name}")

 def get(self, name: str) -> int:
 return self.lookup_cell(name).value

 def set(self, name: str, value: int) -> None:
 cell = self.lookup_cell(name)
 old = cell.value
 cell.value = int(value)
 self._dbg(f"set {name}: {old} -> {value}")

 def push(self, fr: Frame) -> None:
 self.stack.append(fr)
 self._dbg(f"push frame {fr.name}")

 def pop(self) -> None:
 fr = self.stack.pop()
 self._dbg(f"pop frame {fr.name}")

 def call(self, fn, arg_cells: dict, parent: Frame, byref: set[str] = set()):
 """
 fn(rt): executes using current frame
 arg_cells: mapping param -> Cell (from caller)
 parent: static link for callee (lexical parent)
 byref: which params are passed by reference; others are by value
 """
 caller = self.top()
 fr = Frame(fn.__name__, parent, caller, {})

 # Bind parameters into the callee frame
 for pname, caller_cell in arg_cells.items():
 if pname in byref:
 fr.env[pname] = caller_cell # alias
 else:
 fr.env[pname] = Cell(caller_cell.value) # copy

 self._dbg(
 f"CALL {fn.__name__} "
 f"args={{" + ", ".join(
 f"{k}={'&' if k in byref else ''}{v.value}" for k, v in arg_cells.items()
) + "}} "
 f"static_link={parent.name if parent else None} "
 f"dynamic_link={caller.name if caller else None}"

)

 self.push(fr)
 fn(self)
 self.pop()

---------- "program" built with subprograms ----------
def inner(rt: Runtime):
 # return a + b + x (resolved via static scope)
 rt.declare("_ret", rt.get("a") + rt.get("b") + rt.get("x"))

def outer(rt: Runtime):
 # param: a
 rt.declare("b", 10)
 rt.declare("x", 5)
 # inner is lexically nested in outer, so its static link should be the current outer
frame
 rt.call(inner, {"x": rt.lookup_cell("x")}, parent=rt.top())
 # forward return (store into current frame for easy retrieval by main)
 rt.declare("_ret", rt.get("_ret"))

def inc(rt: Runtime):
 # param: p
 rt.set("p", rt.get("p") + 1)

def main(rt: Runtime):
 # outer(7) -> 22
 rt.declare("a", 7)
 rt.call(outer, {"a": rt.lookup_cell("a")}, parent=rt.top())
 print(rt.get("_ret"))

 # pass-by-value vs pass-by-reference
 rt.declare("x", 10)

 # by value: formal p is a copy
 rt.call(inc, {"p": rt.lookup_cell("x")}, parent=rt.top(), byref=set())
 print("x after by-value inc:", rt.get("x")) # 10

 # by reference: formal p aliases caller's x
 rt.call(inc, {"p": rt.lookup_cell("x")}, parent=rt.top(), byref={"p"})
 print("x after by-ref inc:", rt.get("x")) # 11

if __name__ == "__main__":
 # Flip debug=True to see stack/lookup/call traces
 rt = Runtime(debug=False)
 main(rt)

