Intr ion:

In this assignment, we simulate the "call stack" of subroutines to illustrate the state of variables and parameters passed by
value and by reference. We are also interested in contrasting Static (Lexical) Scoping in which variable lookup follows

Queens College of CUNY
Department of Computer Science
Programming Languages
(CSCI 316)

Winter 2026

Assignment #9
"Subprogram Scoping Simulation™
Due: January 17, 2026

the static link (parent) chain vs. Dynamic Scoping io which variable lookup follows the call chain.

The following two tables may be helpful:

Aspect

Definition

Relationship

Purpose

Mechanism

Feature

Caller

The specific subprogram that initiates
the execution of another subprogram at
a given point during runtime.

A dynamic relationship. It changes with
each invocation. The same subprogram
can be called by many different callers.

Control flow and execution stack
management. The caller is suspended
while the called subprogram executes,
and control returns to the caller upon
completion.

The connection is managed by a
dynamic link (return address and saved
execution status) on the call stack.

Static (Lexical) Scoping

Parent

The subprogram whose code block immediately
and statically contains the definition of a nested
subprogram in the source code.

A static (lexical) relationship. It is fixed at
compile time by the source code structure. A
subprogram has only one static parent.

Scoping and variable access (referencing
environment) in languages that allow nested
subprograms. A nested subprogram can
typically access the non-local variables declared
in its static parent's scope.

The connection is managed by a static link (a
pointer to the parent's activation record
instance) in languages that use static scoping
with nested functions.

Dynamic Scoping

Determination

Variable Lookup

Predictability

Implementation

Example

Usage

Compile-time (based on code's
physical nesting).

Finds the closest enclosing
declaration in the source code.

Highly predictable; easier for humans
to reason about.

Compiler uses symbol tables to map
names to scopes.

In f() calling g(), g's x is found in f's
scope (if nested).

Most modern languages (C, Java,
Python, etc.).

Runtime (based on call stack order).

Finds the most recently active declaration in
the call stack.

Less predictable; can change with different
call sequences.

Interpreter/runtime uses linked lists/stack for
bindings.

In f() calling g(), g's x could be from f or an
outer scope, depending on who called f.

Older Lisps, some shell

Submissions:
In the Google form, please submit:

e Assignment09.py (source code - MODIFIED FOR DYNAMIC SCOPING)

Accicaraan

Tasks:
[1] Use the code below to illustrate "static (aka lexical) scoping". Understand the goals and structure.

[2] Modify the code to use "dynamic scoping" that is, when resolving a variable name, look in the current frame, and if not
found, follow the dynamic link (caller) chain instead of the static link (parent)

from dataclasses import dataclass

@dataclass
class Cell:
value: int

@dataclass
class Frame:
name: str

parent: "Frame | None" # static link (lexical parent)
caller: "Frame | None" # dynamic link (caller)
env: dict # name -> Cell

class Runtime:
def init (self, debug: bool = False):
self.debug debug
self.stack [Frame ("GLOBAL", None, None, {})]

def dbg(self, msg: str) -> None:
if self.debug:
print (£" [DBG] {msg}l")
print (self.dump stack())

def dump stack(self) -> str:
lines = ["STACK (top last):"]
for i, fr in enumerate(self.stack):
env_view = {k: v.value for k, v in fr.env.items()}
lines.append (
£ [{i}] {fr.name} "
f'"dyn={fr.caller.name if fr.caller else None} "
f"stat={fr.parent.name if fr.parent else None} "
f"env={env_view}"
)

return "\n".join(lines)

def top(self) -> Frame:
return self.stack[-1]

def declare(self, name: str, value: int) -> None:
self.top () .env[name] = Cell (int (value))

self. dbg(f"declare {name}={value} in {self.top() .name}")

def lookup cell(self, name: str) -> Cell:
fr = self.top()
hops = 0
while fr is not None:
if name in fr.env:
if self.debug:
self. dbg(f"lookup {name} found in {fr.name} (static hops={hops})")
return fr.env[name]
fr = fr.parent # static chain lookup
hops +=1
raise NameError (f"Undefined name: {name}")

def get(self, name: str) -> int:
return self.lookup cell (name) .value

def set(self, name: str, value: int) -> None:
cell = self.lookup cell (name)
old = cell.value
cell.value = int (value)
self. dbg(f"set {name}: {old} -> {value}")

def push(self, fr: Frame) -> None:
self.stack.append (fr)
self. dbg(f"push frame {fr.name}")

def pop(self) -> None:
fr = self.stack.pop ()
self. dbg(f"pop frame {fr.name}")

def call(self, fn, arg cells: dict, parent: Frame, byref: set[str] = set()):
mmoan
fn(rt): executes using current frame
arg cells: mapping param -> Cell (from caller)
parent: static link for callee (lexical parent)
byref: which params are passed by reference; others are by value
caller = self.top()
fr = Frame (fn. name , parent, caller, {})

Bind parameters into the callee frame
for pname, caller cell in arg cells.items():
if pname in byref:

fr.env[pname] = caller cell # alias
else:
fr.env([pname] = Cell(caller cell.value) # copy
self. dbg(
f"CALL {fn. name } "
f'args={{" + ", ".join(

f"{k}={'&" if k in byref else ''}{v.value}" for k, v in arg cells.items()
) + "}} "
f"static_link={parent.name if parent else None} "
f"dynamic_link={caller.name if caller else None}"

self.push (fr)
fn(self)
self.pop()

- "program" built with subprograms ----------

def inner(rt: Runtime) :
return a + b + x (resolved via static scope)
rt.declare (" ret", rt.get("a") + rt.get("b") + rt.get("x"))

def outer (rt: Runtime) :

param: a

rt.declare ("b", 10)

rt.declare ("x", 5)

inner is lexically nested in outer, so its static link should be the current outer
frame

rt.call(inner, {"x": rt.lookup cell("x")}, parent=rt.top())

forward return (store into current frame for easy retrieval by main)

rt.declare (" ret", rt.get (" ret"))

def inc(rt: Runtime) :
param: p
rt.set ("p", rt.get("p") + 1)

def main(rt: Runtime) :
outer(7) -> 22
rt.declare("a", 7)
rt.call (outer, {"a": rt.lookup cell("a")}, parent=rt.top())
print(rt.get (" _ret"))

pass-by-value vs pass-by-reference
rt.declare ("x", 10)

by value: formal p is a copy
rt.call(inc, {"p": rt.lookup cell("x")}, parent=rt.top(), byref=set())
print ("x after by-value inc:", rt.get("x")) # 10

by reference: formal p aliases caller's x
rt.call(inc, {"p": rt.lookup cell("x")}, parent=rt.top(), byref={"p"})
print ("x after by-ref inc:", rt.get("x")) # 11
if name == " main ":
Flip debug=True to see stack/lookup/call traces
rt = Runtime (debug=False)
main (rt)

