
Queens College of CUNY
Department of Computer Science

Programming Languages
(CSCI 316)

Winter 2026

Assignment #8
"ADTs and OOP"

Due: January 16, 2026

Introduction:

In this assignment, we explore how classes/objects are expressed in different object-oriented programming (OOP)
languages. As a proof of concept, we design and implement a Fraction ADT

Submissions:

In the Google form, please submit:

●​ Assignment08.pdf (composite of source code and output for all four programming languages)

Tasks:

Choose three OOP languages and identify installed or online IDEs which support them. (Generally you will use C++, Java,
and Python, but you may use other OOP languages as well.)

Repeat the following for each language:

●​ Create a class with two attributes - numerator (int), denominator (int)
●​ Create and implement each of the following methods. You may slightly modify the signature to conform with

stylistic or syntactic requirements of your chosen languages.
○​ init(n, d) - returns a new fraction with numerator = n and denominator = d
○​ print() - prints in the standard format numerator / denominator, e.g. 5/7
○​ isValid() - checks that the denominator is not zero
○​ simplify() - reduces the fraction to lowest terms, 2/4 becomes 1 /2
○​ decimal(p) - returns a decimal approximation, rounded to p decimal places
○​ reciprocate() - inverts the fraction to denominator / numerator
○​ add(fraction) - adds the passed fraction to the current one - you will first need a common denominator
○​ subtract(fraction) - subtracts the passed fraction from the current one - you will first need a common

denominator
○​ multiply(fraction) - multiplies the current fraction by the passed one
○​ divide(fraction) - divides the current fraction by the passed one, equivalent to multiplying by the reciprocal
○​ power(exp) - raises the fraction to the exponent (n/d)^e equivalent to n^e / d^e
○​ egyptianFraction(* - returns a list of Fraction objects of the form 1/d1, 1/d2, 1/d3 etc. such that their sum is

the original fraction
○​ OPTIONAL name() - returns the way people would say it, e.g. "one twentieth", "two thirds", "three fourths"

●​ Test each of those functions for a few inputs. Perhaps run in a loop over a bunch of numbers…

 For Egyptian Fractions, see:

●​ https://en.wikipedia.org/wiki/Egyptian_fraction
●​ https://www.geeksforgeeks.org/dsa/greedy-algorithm-egyptian-fraction/

https://en.wikipedia.org/wiki/Egyptian_fraction
https://www.geeksforgeeks.org/dsa/greedy-algorithm-egyptian-fraction/

