
Queens College of CUNY
Department of Computer Science

Programming Languages
(CSCI 316)

Winter 2026

Assignment #6
"Assignments and Statements"

Due: January 11, 2026

Introduction:

In this assignment, we explore Python code to parse and process arithmetic expressions and assignment statements. We
utilize the well-known Python "PLY", Python LEX-YACC, where LEX is a Lexical Analyzer that divides the input text (basic
program) into a sequence of tokens based on regular expression rules, while YACC (Yet Another Compiler Compiler)
takes those tokens and organizes them into a meaningful structure (like a parse tree) according to a specified grammar.

Submissions:

In the Google form, please submit:

●​ Assignment06.py (source code)
●​ Assignment06.txt (console output)

Tasks:

[0] Create a new program Assignment06.py, update the assignment name and number in the comment at the top, and
perform any other preliminary tasks associated with a new assignment.

[1] Use the following code and get it to run for the provided demo data and review the output

[2] Define a new binary operator & such that x & y = max(x, y). Make it have even lower priority than addition (+) and
subtraction (-). Modify the code below to support this operator. Recommendation: search the code for + and PLUS to see
what is done for addition, and add the appropriate code for & and MAX. Test with a few expressions that use this operator.

[3] Define a new binary operator $ such that x $ y = min(x, y). Make it have even lower priority than addition (+) and
subtraction (-). See step [2] for suggestions.

"""
PLY example: arithmetic expressions + statements
Now supports newline-terminated statements (no semicolons required).

Statements may end with:
 - NEWLINE
 - SEMI-COLON
Blank lines are allowed.

Install:
 pip install ply
Run:
 python ply_calc_newline.py
"""

import ply.lex as lex

import ply.yacc as yacc

LEXER

DEBUG_LEX = False

reserved = {"print": "PRINT"}

tokens = (
 "ID",
 "NUMBER",
 "PLUS",
 "MINUS",
 "TIMES",
 "DIVIDE",
 "MOD",
 "POW",
 "EQUALS",
 "LPAREN",
 "RPAREN",
 "SEMI",
 "NEWLINE",
) + tuple(reserved.values())

t_PLUS = r"\+"
t_MINUS = r"-"
t_TIMES = r"*"
t_DIVIDE = r"/"
t_MOD = r"%"
t_POW = r"\^"
t_EQUALS = r"="
t_LPAREN = r"\("
t_RPAREN = r"\)"
t_SEMI = r";"

Ignore spaces/tabs, but NOT newlines
t_ignore = " \t\r"

def t_NUMBER(t):
 r"(\d+(\.\d*)?|\.\d+)"
 t.value = int(t.value) if "." not in t.value else float(t.value)
 return t

def t_ID(t):
 r"[A-Za-z_][A-Za-z0-9_]*"
 t.type = reserved.get(t.value, "ID")
 if DEBUG_LEX:
 print(f"TOKEN {t.type}({t.value}) at line {t.lineno}")
 return t

def t_NEWLINE(t):

 r"\n+"
 t.lexer.lineno += len(t.value)
 # Collapse consecutive newlines into a single NEWLINE token
 t.value = "\n"
 if DEBUG_LEX:
 print(f"TOKEN {t.type}({t.value}) at line {t.lineno}")
 return t

def t_error(t):
 raise SyntaxError(f"Illegal character {t.value[0]!r} at line {t.lexer.lineno}")

lexer = lex.lex()

PARSER

precedence = (
 ("left", "PLUS", "MINUS"),
 ("left", "TIMES", "DIVIDE", "MOD"),
 ("right", "POW"),
 ("right", "UMINUS"),
)

AST shapes:
("program", [stmt...])
("assign", name, expr)
("exprstmt", expr)
("print", expr)
expr nodes: ("num", v), ("var", name), ("unop","-",e), ("binop",op,l,r)

def p_program_empty(p):
 """program : opt_newlines"""
 p[0] = ("program", [])

def p_program_append(p):
 """program : program opt_newlines statement"""
 p[0] = ("program", p[1][1] + [p[3]])

def p_opt_newlines_empty(p):
 """opt_newlines : """
 p[0] = None

def p_opt_newlines_some(p):
 """opt_newlines : opt_newlines NEWLINE"""
 p[0] = None

def p_end(p):
 """end : NEWLINE
 | SEMI"""
 p[0] = None

def p_statement_assign(p):
 """statement : ID EQUALS expr end"""
 p[0] = ("assign", p[1], p[3])

def p_statement_expr(p):
 """statement : expr end"""
 p[0] = ("exprstmt", p[1])

def p_statement_print(p):
 """statement : PRINT LPAREN expr RPAREN end"""
 p[0] = ("print", p[3])

def p_expr_binop(p):
 """expr : expr PLUS expr
 | expr MINUS expr
 | expr TIMES expr
 | expr DIVIDE expr
 | expr MOD expr
 | expr POW expr"""
 p[0] = ("binop", p[2], p[1], p[3])

def p_expr_uminus(p):
 """expr : MINUS expr %prec UMINUS"""
 p[0] = ("unop", "-", p[2])

def p_expr_group(p):
 """expr : LPAREN expr RPAREN"""
 p[0] = p[2]

def p_expr_number(p):
 """expr : NUMBER"""
 p[0] = ("num", p[1])

def p_expr_var(p):
 """expr : ID"""
 p[0] = ("var", p[1])

def p_error(p):
 if p is None:
 return # allow clean EOF
 raise SyntaxError(f"Syntax error near {p.value!r} at line {p.lineno}")

parser = yacc.yacc(start="program")

EVALUATOR

class EvalError(Exception):
 pass

def eval_expr(node, env):
 kind = node[0]
 if kind == "num":
 return node[1]
 if kind == "var":
 name = node[1]
 if name not in env:

 raise EvalError(f"Undefined variable: {name}")
 return env[name]
 if kind == "unop":
 _, op, e = node
 v = eval_expr(e, env)
 if op == "-":
 return -v
 raise EvalError(f"Unknown unary op: {op}")
 if kind == "binop":
 _, op, l, r = node
 a = eval_expr(l, env)
 b = eval_expr(r, env)
 if op == "+": return a + b
 if op == "-": return a - b
 if op == "*": return a * b
 if op == "/": return a / b
 if op == "%": return a % b
 if op == "^": return a ** b
 raise EvalError(f"Unknown binop: {op}")
 raise EvalError(f"Unknown expr node: {node}")

def exec_program(ast, env=None):
 if env is None:
 env = {}
 assert ast[0] == "program"
 for stmt in ast[1]:
 k = stmt[0]
 if k == "assign":
 _, name, e = stmt
 env[name] = eval_expr(e, env)
 elif k == "exprstmt":
 _, e = stmt
 _ = eval_expr(e, env)
 elif k == "print":
 _, e = stmt
 print(eval_expr(e, env))
 else:
 raise EvalError(f"Unknown statement: {stmt}")
 return env

def dump_tokens(text):
 lexer.input(text)
 print("LEXEMES / TOKENS:")
 while True:
 tok = lexer.token()
 if not tok:
 break
 print(f"{tok.type:<8} value={tok.value!r:<10} line={tok.lineno}")

DEMO / REPL

if __name__ == "__main__":
 sample = """\

x = 2 + 3 * 4
y = x ^ 2 - 10
print(y)
print(-(1 + 2) * 3)

z = y % 7
print(z)
"""
 dump_tokens(sample)# optional to see tokens
 # parser = yacc.yacc(start="program", debug=True)
 ast = parser.parse(sample, lexer=lexer, debug=False)
 print("AST:", ast)
 env = exec_program(ast)
 print("Final env:", env)

 print("\nREPL: press Enter on a blank line to execute buffered input (Ctrl+C to quit).")
 buf = []
 try:
 while True:
 line = input(">>> ")
 if line.strip() == "":
 if buf:
 text = "\n".join(buf) + "\n"
 tree = parser.parse(text, lexer=lexer)
 exec_program(tree, env)
 buf.clear()
 continue
 buf.append(line)
 except (KeyboardInterrupt, EOFError):
 print("\nbye")

