Queens College of CUNY
Department of Computer Science
Programming Languages
(CSCI 316)

Winter 2026

Assignment #6
"Assignments and Statements™
Due: January 11, 2026

Intr ion:

In this assignment, we explore Python code to parse and process arithmetic expressions and assignment statements. We
utilize the well-known Python "PLY", Python LEX-YACC, where LEX is a Lexical Analyzer that divides the input text (basic
program) into a sequence of tokens based on regular expression rules, while YACC (Yet Another Compiler Compiler)
takes those tokens and organizes them into a meaningful structure (like a parse tree) according to a specified grammar.

Submissions:
In the Google form, please submit:

e Assignment06.py (source code)
e Assignment06.txt (console output)

Tasks:

[0] Create a new program Assignment06.py, update the assignment name and number in the comment at the top, and
perform any other preliminary tasks associated with a new assignment.

[1] Use the following code and get it to run for the provided demo data and review the output

[2] Define a new binary operator & such that x & y = max(x, y). Make it have even lower priority than addition (+) and
subtraction (-). Modify the code below to support this operator. Recommendation: search the code for + and PLUS to see
what is done for addition, and add the appropriate code for & and MAX. Test with a few expressions that use this operator.

[3] Define a new binary operator $ such that x $ y = min(x, y). Make it have even lower priority than addition (+) and
subtraction (-). See step [2] for suggestions.

PLY example: arithmetic expressions + statements
Now supports newline-terminated statements (no semicolons required) .

Statements may end with:
- NEWLINE
- SEMI-COLON

Blank lines are allowed.

Install:
pip install ply
Run:
python ply calc newline.py

wnn

import ply.lex as lex

import ply.yacc as yacc

DEBUG_LEX = False
reserved = {"print": "PRINT"}

tokens = (
"ID",
"NUMBER",
"PLUS",
"MINUS",
"TIMES",
"DIVIDE",
"MOD",
"POW",
"EQUALS",
"LPAREN",
"RPAREN",
"SEMI",
"NEWLINE",

) t+ tuple (reserved.values())

t PLUS = r"\+"
t MINUS = r"-"
t TIMES = r"*"
t DIVIDE = r"/"
t MOD = r"g"
t POW = rm\n"
t EQUALS = r"="
t LPAREN = r"\ ("
t RPAREN = r"\)"
t SEMI = r";"

Ignore spaces/tabs, but NOT newlines
t ignore = " \t\r"

def t NUMBER (t):
r" (\d+ (\.\d*) ?|\.\d+) "
t.value = int(t.value) if "." not in t.value else float (t.value)
return t

def t ID(t):
r" [A-Za-z_] [A-Za-z0-9]*"
t.type = reserved.get(t.value, "ID")
if DEBUG LEX:
print (f"TOKEN {t.type} ({t.value}) at line {t.lineno}")
return t

def t NEWLINE (t) :

r"\n+"
t.lexer.lineno += len(t.value)
Collapse consecutive newlines into a single NEWLINE token
t.value = "\n"
if DEBUG LEX:

print (£E"TOKEN {t.type} ({t.value}) at line {t.lineno}")
return t

def t error(t):
raise SyntaxError (f"Illegal character {t.value[0]'r} at line {t.lexer.lineno}")

lexer = lex.lex ()

PARSER

precedence = (
("left", "PLUS", "MINUS"),
("left", "TIMES", "DIVIDE", "MOD"),
("right", "POW"),
("right", "UMINUS"),
)
AST shapes:
("program", [stmt...])
("assign", name, expr)
("exprstmt", expr)
("print", expr)
expr nodes: ("num", v), ("var", name), ("unop","-",e), ("binop",op,1,r)

def p program empty (p) :

program : opt newlines"""
pl0] = ("program", [])

def p program append(p) :
"""program : program opt newlines statement"""
pl0] = ("program", p[l][1] + [p[3]])

def p opt newlines empty(p):
mwinw optinewl ines : mwm
p[0] = None

def p opt newlines some(p) :
"""opt newlines : opt newlines NEWLINE"™"

p[0] = None
def p end(p):
"""end : NEWLINE
I SEMI mwww
pl[0] = None

def p statement assign(p):
"""statement : ID EQUALS expr end"""
pl0] = ("assign", pl[l], p[3])

def p statement expr(p):
"""statement : expr end"""
pl0] = ("exprstmt", p[l])

def p statement print (p):
"""statement : PRINT LPAREN expr RPAREN end"""
pl0] = ("print", pl[3])

def p expr binop (p):
"""expr : expr PLUS expr
expr MINUS expr
expr TIMES expr

expr MOD expr
expr POW expr"""
p[0] = ("binop", p[2], p[1l], p[3])

|
|
| expr DIVIDE expr
|
|

def p expr uminus (p):
"""expr : MINUS expr S$prec UMINUS"""
p[o] P ("unop", "_", p[2])

def p expr group (p):
"""expr : LPAREN expr RPAREN"""
pl0] = p[2]

def p expr number (p) :
mmon eXpr : NUMBERII mn
pl0] = ("num", p[1])

def p expr var(p):

expr : ID"""
pl0] = ("var", pl[l])

def p_error (p):
if p is None:
return # allow clean EOF
raise SyntaxError (f"Syntax error near {p.value!r} at line {p.lineno}")

parser = yacc.yacc(start="program")

class EvalError (Exception) :
pass

def eval expr (node, env):
kind = node[0]
if kind == "num":
return node[1]
if kind == "var":
name = node[1l]
if name not in env:

raise EvalError (f"Undefined variable: {name}")
return env[name]
if kind == "unop":
_, Op, e = node
v = eval expr (e, env)
if op == "-":
return -v
raise EvalError (£"Unknown unary op: {op}")
if kind == "binop":
_, op, 1, r = node
a = eval expr(l, env)
b = eval expr(r, env)

if op == "+": return a + b
if op == "-": return a - Db
if op == "*": return a * b
if op == "/": return a / Db
if op == "$": return a % Db
if op == """: return a ** b

raise EvalError (f"Unknown binop: {op}")
raise EvalError (f"Unknown expr node: {node}")

def exec program(ast, env=None) :
if env is None:
env = {}
assert ast[0] == "program"
for stmt in ast[l]:
k = stmt[0]
if k == "assign":
_, hame, e = stmt
env[name] = eval expr (e, env)
elif k == "exprstmt":
_, € = stmt
_ = eval expr(e, env)
elif k == "print":
_, € = stmt
print (eval expr(e, env))
else:
raise EvalError (f"Unknown statement: {stmt}")
return env

def dump tokens (text):
lexer.input (text)
print ("LEXEMES / TOKENS:")
while True:
tok = lexer.token|()
if not tok:
break
print (f"{tok.type:<8} value={tok.value!r:<10} line={tok.lineno}")

DEMO / REPL

if name == " main ":

Sample — "ll\

X =2+ 3 * 4
y=x "2 -10
print (y)

print(-(1 + 2) * 3)

o

z =y 7

print (z)

win
dump tokens (sample) # optional to see tokens
parser = yacc.yacc (start="program", debug=True)
ast = parser.parse (sample, lexer=lexer, debug=False)
print ("AST:", ast)
env = exec program(ast)
print ("Final env:", env)

print ("\nREPL: press Enter on a blank line to execute buffered input (Ctrl+C to quit).")
buf = []
try:
while True:
line = input (">>> ")
if line.strip() == "":
if buf:
text = "\n".join(buf) + "\n"
tree = parser.parse (text, lexer=lexer)
exec program(tree, env)
buf.clear ()
continue
buf.append(line)
except (KeyboardInterrupt, EOFError):
print ("\nbye")

