Queens College of CUNY
Department of Computer Science
Programming Languages
(CSCI 316)

Winter 2026

Assignment #5
"Variables and their Attributes"
Due: January 10, 2026

Intr ion:

In this assignment, we use Python code to summarize information about the variables and their primary attributes: name,
type, address, value, location, scope, and lifetime, as well as reference count. We "dump" these variables at different
points to illustrate how variables go in and out of scope and how the attributes change over the course of the execution.,

Submissions:
In the Google form, please submit:

e Assignment05.py (source code)
e Assignment05.txt (console output)

Tasks:

[0] Create a new program Assignment04.py, update the assignment name and number in the comment at the top, and
perform any other preliminary tasks associated with a new assignment.

[1] Use the following code and get it to run for the provided demo data and review the table of variables.

[2] Add two recursive functions to the code: one that computes a recursive formula and another that performs an algorithm
like searching or sorting. For searching or sorting, you will need either a sorted or unsorted array/list as input.

[3] Call dump_variables() before, during, and immediately after each of the two functions you chose. When you call those
two recursive functions, keep the input small as otherwise the output will get unwieldly.

[4] Answer this question in free-from comments in your output: which variable attributes are changing and which are not
as the code progresses.

import gc

import inspect

import sys

from collections import deque
from types import FrameType

def infer scope(name: str, frame: FrameType) -> str:
if name in frame.f locals:
return "local"
if name in frame.f globals:
return "global"
if name in frame.f builtins:
return "builtin"
return "unknown"

def infer lifetime(scope: str) -> str:

if scope == "local":

return "until function returns"
if scope == "global":

return "until program exit"
if scope == "builtin":

return "interpreter lifetime"
return "unknown"

def safe repr(x, limit=80) -> str:
try:
r = repr (x)
except Exception as e:
return f"<repr error: {e. class . name_ }>"
return r 1if len(r) <= limit else r[: limit - 3] + "..."

def safe refcount (x) -> str:
try:
return str(sys.getrefcount(x) - 1) # subtract temp ref
except Exception as e:
return f"err:{e. class . name }"

def safe is tracked(x) —-> str:
try:
return "yes" if gc.is tracked(x) else "no"
except Exception as e:
return f"err:{e. class . name }"

def is reachable from roots(target,
frame: FrameType,
max nodes: int = 20000,
max_depth: int = 12) -> str:
wnn
Approx reachability via bounded BFS over gc referents from roots:
locals/globals/builtins + sys.modules.
wnn
try:
tgt id = id(target)
except Exception:
return "UNKNOWN (unid)"

roots = [frame.f locals, frame.f globals, frame.f builtins, sys.modules]

g = deque ()
seen = set ()

def enqueue (obj, depth):
oid = id(ob7j)
if oid in seen:
return
seen.add (oid)
g.append ((obj, depth))

for r in roots:
enqueue (r, 0)

if tgt id in seen:
return "YES"

nodes = 0
while qg:
obj, depth = g.popleft()
nodes += 1
if nodes > max nodes:
return "UNKNOWN (limit)™"
if depth >= max depth:
continue

try:

referents = gc.get referents (obj)
except Exception:

continue

for ref in referents:
rid = id(ref)
if rid == tgt id:
return "YES"
if rid not in seen:
enqueue (ref, depth + 1)

return "NO"

def dump variables (frame=None, *,
include builtins=False,
reachability=True,
max nodes=20000,
max_ depth=12,
value 1imit=80):

wuon

Dumps visible variables (globals+locals) with attributes including VALUE.
mwmoan
if frame is None:

frame = inspect.currentframe () .f back

merged = {}
merged.update (frame.f globals)
merged.update (frame.f locals)

if include builtins:
merged.update (frame.f builtins)

Header
cols = [
("Name", 20),
("Type", 16),
("Address", 18),
("Scope", 9),
("Lifetime", 22),
("RefCt", 60),
("cc", 4y,

]
if reachability:

cols.append(("Reach", 14))
cols.append(("Value", 0))

line = "=" * 140
print (line)
header = ""
for ¢, w in cols:
header += (f"{c:<{w}} " if w > 0 else c)
print (header.rstrip())
print (line)

for name, value in sorted(merged.items (), key=lambda kv: kv[0]):

tname = type (value). name
addr = hex(id(value))
scope = infer scope (name, frame)

life = infer lifetime (scope)

refc = safe refcount (value)

tracked = safe is tracked(value)

val = safe repr(value, limit=value limit)

if reachability:
reach = is reachable from roots(
value, frame, max nodes=max nodes, max depth=max depth
row = (f"{name:<20} {tname:<16} {addr:<18} {scope:<9} {life:<22} "
f"{refc:<6} {tracked:<4} {reach:<14} {val}l")
else:
row = (f"{name:<20} {tname:<16} {addr:<18} {scope:<9} {life:<22} "
f"{refc:<6} {tracked:<4} {val}")
print (row)
print (line)

GLOBAL VAR = {"k": "v"}

def main() :

local list = [1, 2, 3]
local dict = {"a": 1, "b": 2}
temp = "hello"

dump variables(value 1imit=70)

"w

if name == " main ":
main ()

