Queens College of CUNY
Department of Computer Science
Programming Languages
(CSCI 316)

Winter 2026

Assignment #4
"Context-Free Grammars and Derivations"
Due: January 9, 2026

Intr ion:

In this assignment, we use Python code to simulate a context-free grammar (CFG), produce a leftmost derivation, and
output the associated parse tree for small Python programs.

Submissions:
In the Google form, please submit:

e Assignment04.py (source code)
e Assignment04.txt (console output)

Tasks:

[0] Create a new program Assignment04.py, update the assignment name and number in the comment at the top, and
perform any other preliminary tasks associated with a new assignment.

[1] Use the following code obtained via "vibe programming".
[2] Run CFGDiriver for the three given one-line Python programs and two more that you construct

[3] Understand the output of the simulations. (While you would not be expected to write such code on an exam, you need
to be able to use a CFG to produce a derivation.)

from dataclasses import dataclass
from typing import List, Tuple, Dict, Optional, Union

Symbol = str

@dataclass
class Node:
sym: Symbol
children: List["Node"]

def pretty(self, indent: str = "", last: bool = True) -> str:
elbow = "L-" if last else "F—"
out = f"{indent}{elbow}{self.sym}\n"
indent?2 = indent + (" " if last else "| ")
for i, ch in enumerate(self.children):
out += ch.pretty(indent2, i == len(self.children) - 1)
return out

class CFGDeriver:

def init (self):
self.start: Symbol = "Stmt"
self.nonterminals = {"Stmt", "Expr", "ExprP", "Term", "TermP", "Factor"}

Productions are lists of alternatives; each alternative is a list of symbols.

self.prods: Dict[Symbol, List[List[Symbol]l]] = {
"Stmt": [["ID", "=", "Expr"]],
"Expr": [["Term", "ExprP"]],
"ExprP": [["+", "Term", "Exprp"], ["-", "Term", "ExprP"], ["e"]],
"Term": [["Factor", "TermP"]],
"TermP": [["*", "Factor", "TermP"], ["/", "Factor", "TermP"], ["e"]1],
"Factor": [[" (", "Expr", ™)"], ["ID"], ["NUM"]],

def tokenize(self, s: str) -> List[str]:
Very small tokenizer:
- identifiers: letters/underscore followed by letters/digits/underscore
- numbers: digits
- symbols: = + - * / ()
mman
import re
token spec = [
("NUM"’ r"\d+") ,

("ID", r" [A-Za-z_]\w*"),
("SKIP", r"[\tl+"),
("SYMS"™, r"==|!=|<=|>=|[=t\-*/()]1"), # keep simple
("MISM", r"."),
1
tok re = "|".join(f" (?P<{name}>{pat})" for name, pat in token spec)

out = []

for m in re.finditer (tok re, s):
kind = m.lastgroup
val = m.group ()

if kind == "SKIP":
continue
if kind == "MISM":

raise ValueError (f"Unexpected character: {val'r}")
if kind in ("ID", "NUM"):
out.append (kind) # normalize to token type
out.append (val) # and keep lexeme for printing
else:
out.append(val)
For parsing we want a stream of *terminals*; keep lexemes in a parallel list.
We'll compress to terminals where ID/NUM match by type but record actual words.
terminals = []
i=20
while i < len (out):
if out[i] in ("ID", "NUM"):
terminals.append(out[i]) # terminal is token type
i 4= 2
else:
terminals.append(out[i])
i+=1

def

def

def

return terminals

derive (self, program: str) -> None:
tokens = self.tokenize (program)
print ("Input:", program)

print ("Tokens:", tokens)

derivation: List[Tuple[Symbol, List[Symbol]]l] = [] # (LHS, RHS chosen)
tree = self. parse symbol (self.start, tokens, 0, derivation)

if tree is None:
print ("\nParse failed: string not generated by the grammar.")
return

node, pos = tree

if pos != len(tokens):
print ("\nParse stopped early; remaining tokens:", tokens[pos:])
return

print ("\nProductions used (in order):")
for lhs, rhs in derivation:
print (f" {lhs} -> {' '.join(rhs)}")

print ("\nLeftmost derivation (sentential forms):")
forms = self. sentential forms(derivation)
for i, £ in enumerate (forms) :

print (£"{i:2d}: {£f}1")

print ("\nParse tree:")
print (node.pretty())

_sentential forms (self, derivation: List[Tuple[Symbol, List[Symbol]]]) -> List[str]:
win
Reconstruct a leftmost derivation from recorded production applications.
We assume our parser expands the leftmost pending nonterminal at each step
(true for this top-down approach).
sent = [self.start]
forms = [" ".join(sent)]
for lhs, rhs in derivation:
find leftmost occurrence of lhs in sentential form
try:
idx = sent.index(lhs)
except ValueError:
if not found (shouldn't happen), skip

continue
replacement = [] if rhs == ["e¢"] else rhs
sent = sent[:idx] + replacement + sent[idx + 1:]
forms.append (" ".join(sent) if sent else "e")

return forms

_parse symbol (

self,
sym: Symbol,
tokens: List[str],

wnn

)

pos:

int,
derivation:

-> Optional [Tuple [Node,
Terminal

List[Tuple[Symbol,

int]]:

if sym not in self.nonterminals:

if

sym == nan
return Node ("e",
if pos < len(tokens)

return Node (sym,

return None

Nonterminal:

(1,

pos

and tokens|[pos]

(1,

try alternatives

for rhs in self.prods[sym]:
Record attempt;

saved len
saved pos =
children:

pos

pos + 1

List[Symbol]]],

== sym:

only commit if this alternative succeeds.

List [Node]

len (derivation)

=[]

Commit production choice now, but roll back if it fails.

derivation.append((sym,

ok

cur pos =
for part in rhs:

res

True

pos

if res is None:

child,

ok
break

False

rhs))

self. parse symbol (part,

cur pos = res
omit epsilon nodes from tree display if you prefer;

children.append (child)

if ok:
return Node (sym,

rollback

derivation(:]

pos

saved pos

return None

children),

cur pos

derivation[:saved len]

tokens,

cur pos,

Simple CFG derivation simulator + backtracking parser.

Grammar
Stmt ->
Expr ->
ExprP ->
Term ->
TermP ->

wnn

Factor ->

def main() :

g

ID

Expr

Term ExprP

T+

Factor TermP

L4

"

v EXpI l)l

= CFGDeriver ()

Term ExprP

(Python-1like subset):

Factor TermP

ID

|l |l

-' Term ExprP |

| v/
| NUM

€

Factor TermP

3

derivation)

keep them for clarity

g.derive("x =1 + 2
g.derive ("total = (
(

~

g.derive("y = a

if name == " main ":

main ()

