
Queens College of CUNY
Department of Computer Science

Programming Languages
(CSCI 316)

Winter 2026

Assignment #4
"Context-Free Grammars and Derivations"

Due: January 9, 2026

Introduction:

In this assignment, we use Python code to simulate a context-free grammar (CFG), produce a leftmost derivation, and
output the associated parse tree for small Python programs.

Submissions:

In the Google form, please submit:

●​ Assignment04.py (source code)
●​ Assignment04.txt (console output)

Tasks:

[0] Create a new program Assignment04.py, update the assignment name and number in the comment at the top, and
perform any other preliminary tasks associated with a new assignment.

[1] Use the following code obtained via "vibe programming".

[2] Run CFGDriver for the three given one-line Python programs and two more that you construct

[3] Understand the output of the simulations. (While you would not be expected to write such code on an exam, you need
to be able to use a CFG to produce a derivation.)

from dataclasses import dataclass
from typing import List, Tuple, Dict, Optional, Union

Symbol = str

@dataclass
class Node:
 sym: Symbol
 children: List["Node"]

 def pretty(self, indent: str = "", last: bool = True) -> str:
 elbow = "└─" if last else "├─"
 out = f"{indent}{elbow}{self.sym}\n"
 indent2 = indent + (" " if last else "│ ")
 for i, ch in enumerate(self.children):
 out += ch.pretty(indent2, i == len(self.children) - 1)
 return out

class CFGDeriver:

 def __init__(self):
 self.start: Symbol = "Stmt"
 self.nonterminals = {"Stmt", "Expr", "ExprP", "Term", "TermP", "Factor"}

 # Productions are lists of alternatives; each alternative is a list of symbols.
 self.prods: Dict[Symbol, List[List[Symbol]]] = {
 "Stmt": [["ID", "=", "Expr"]],
 "Expr": [["Term", "ExprP"]],
 "ExprP": [["+", "Term", "ExprP"], ["-", "Term", "ExprP"], ["ε"]],
 "Term": [["Factor", "TermP"]],
 "TermP": [["*", "Factor", "TermP"], ["/", "Factor", "TermP"], ["ε"]],
 "Factor": [["(", "Expr", ")"], ["ID"], ["NUM"]],
 }

 def tokenize(self, s: str) -> List[str]:
 """
 Very small tokenizer:
 - identifiers: letters/underscore followed by letters/digits/underscore
 - numbers: digits
 - symbols: = + - * / ()
 """
 import re
 token_spec = [
 ("NUM", r"\d+"),
 ("ID", r"[A-Za-z_]\w*"),
 ("SKIP", r"[\t]+"),
 ("SYMS", r"==|!=|<=|>=|[=+\-*/()]"), # keep simple
 ("MISM", r"."),
]
 tok_re = "|".join(f"(?P<{name}>{pat})" for name, pat in token_spec)
 out = []
 for m in re.finditer(tok_re, s):
 kind = m.lastgroup
 val = m.group()
 if kind == "SKIP":
 continue
 if kind == "MISM":
 raise ValueError(f"Unexpected character: {val!r}")
 if kind in ("ID", "NUM"):
 out.append(kind) # normalize to token type
 out.append(val) # and keep lexeme for printing
 else:
 out.append(val)
 # For parsing we want a stream of *terminals*; keep lexemes in a parallel list.
 # We'll compress to terminals where ID/NUM match by type but record actual words.
 terminals = []
 i = 0
 while i < len(out):
 if out[i] in ("ID", "NUM"):
 terminals.append(out[i]) # terminal is token type
 i += 2
 else:
 terminals.append(out[i])
 i += 1

 return terminals

 def derive(self, program: str) -> None:
 tokens = self.tokenize(program)
 print("Input:", program)
 print("Tokens:", tokens)

 derivation: List[Tuple[Symbol, List[Symbol]]] = [] # (LHS, RHS chosen)
 tree = self._parse_symbol(self.start, tokens, 0, derivation)

 if tree is None:
 print("\nParse failed: string not generated by the grammar.")
 return

 node, pos = tree
 if pos != len(tokens):
 print("\nParse stopped early; remaining tokens:", tokens[pos:])
 return

 print("\nProductions used (in order):")
 for lhs, rhs in derivation:
 print(f" {lhs} -> {' '.join(rhs)}")

 print("\nLeftmost derivation (sentential forms):")
 forms = self._sentential_forms(derivation)
 for i, f in enumerate(forms):
 print(f"{i:2d}: {f}")

 print("\nParse tree:")
 print(node.pretty())

 def _sentential_forms(self, derivation: List[Tuple[Symbol, List[Symbol]]]) -> List[str]:
 """
 Reconstruct a leftmost derivation from recorded production applications.
 We assume our parser expands the leftmost pending nonterminal at each step
 (true for this top-down approach).
 """
 sent = [self.start]
 forms = [" ".join(sent)]
 for lhs, rhs in derivation:
 # find leftmost occurrence of lhs in sentential form
 try:
 idx = sent.index(lhs)
 except ValueError:
 # if not found (shouldn't happen), skip
 continue
 replacement = [] if rhs == ["ε"] else rhs
 sent = sent[:idx] + replacement + sent[idx + 1:]
 forms.append(" ".join(sent) if sent else "ε")
 return forms

 def _parse_symbol(
 self,
 sym: Symbol,
 tokens: List[str],

 pos: int,
 derivation: List[Tuple[Symbol, List[Symbol]]],
) -> Optional[Tuple[Node, int]]:
 # Terminal
 if sym not in self.nonterminals:
 if sym == "ε":
 return Node("ε", []), pos
 if pos < len(tokens) and tokens[pos] == sym:
 return Node(sym, []), pos + 1
 return None

 # Nonterminal: try alternatives
 for rhs in self.prods[sym]:
 # Record attempt; only commit if this alternative succeeds.
 saved_len = len(derivation)
 saved_pos = pos
 children: List[Node] = []

 # Commit production choice now, but roll back if it fails.
 derivation.append((sym, rhs))

 ok = True
 cur_pos = pos
 for part in rhs:
 res = self._parse_symbol(part, tokens, cur_pos, derivation)
 if res is None:
 ok = False
 break
 child, cur_pos = res
 # omit epsilon nodes from tree display if you prefer; keep them for clarity
 children.append(child)

 if ok:
 return Node(sym, children), cur_pos

 # rollback
 derivation[:] = derivation[:saved_len]
 pos = saved_pos

 return None

"""
 Simple CFG derivation simulator + backtracking parser.

 Grammar (Python-like subset):
 Stmt -> ID '=' Expr
 Expr -> Term ExprP
 ExprP -> '+' Term ExprP | '-' Term ExprP | ε
 Term -> Factor TermP
 TermP -> '*' Factor TermP | '/' Factor TermP | ε
 Factor -> '(' Expr ')' | ID | NUM
"""

def main():
 g = CFGDeriver()

 g.derive("x = 1 + 2 * 3")
 g.derive("total = (1 + 2) * 3")
 g.derive("y = a / (b - 2)")

if __name__ == "__main__":
 main()

