Queens College of CUNY
Department of Computer Science
Programming Languages
(CSCI 316)

Winter 2026

Assignment #3
"Lexical and Syntax Analysis"
Due: January 8, 2026

Intr ion:

In this first coding assignment of our course, we learn about parsing and lexical and syntax analysis, as well as Python
packages that support this process.

Submissions:
In the Google form, please submit:

e Assignment03.py (source code)
e Assignment03.txt (console output)

Preliminary Tasks:

[1] If you haven't done so already, download and install Python 3.14 and PyCharm Professional IDE (free with your edu
email). See the detailed instructions in Assignment #0.

[2] Create a new assignment Assignment03.py.

[3] At the top, add this comment block. (For future assignments, updating the name and number of the assignment.)
# Programming Languages (CSCI 316)

# Winter 2026

# Assignment 3 - Lexical and Syntax Analysis
# Jane Doe (your name)

[4] At the bottom, add a dummy main() function and the lines that call it:

def main() :
pass

if name == " main ":
main ()

Lexical Analysis:

[1] Import these packages
import token

import tokenize

from io import BytesIO

[2] define a function get_tokens(code):



def get tokens (code):
return tokenize.tokenize (BytesIO (code) .readline)

[3] define a function print_tokens_v1(tokens)

def print tokens vl (tokens):
for t in tokens
print (t)

[4] define a function print_tokens_v2(tokens)
def print tokens v2 (tokens):
for t in tokens:
if t.type in (token.ENCODING, token.ENDMARKER) :

continue
print (token.tok name[t.typel, repr(t.string), t.start, t.end)

[5] Call both versions with various code snippets including

code = b"print (1 + 2)\n"

code = b"def add(x, y=2):\n return x + y"
code = "a =1 + 2"
code = "def f(x):\n return x*2\n"

and one more of your choosing
Syntax Analysis:
[1] Import this additional package
import ast
[2] Define a function dump_parse_tree(code)
def dump parse tree (code) :
tree = ast.parse(code)

print (ast.dump (tree, indent=2))

[3] Define a function walk_parse_tree(code)
def walk parse tree (code) :
for node in ast.walk(tree):
print (type (node) . name )
[4] Call both versions with the various code snippets under Lexical Analysis

The parsing expects normal string text while the lexical analyzer expects binary. Convert as follows:

code_str = code bin.decode ()
code bin = code str.encode ()



Integration:

[1] Combine the lexical and syntax analysis into one master function:

def analyze (code) :
print ("=== TOKENS ===")
tokens = get tokens (code)
for t in tokens:
if t.type in (token.ENCODING, token.ENDMARKER) :
continue
print (f"{token.tok name[t.type]:<12} {t.string!r:<10} {t.start}->{t.end}")

print ("\n=== AST ===")

tree = ast.parse(code)
print (ast.dump (tree, indent=2))

[2] Call analyze for all the code snippets above



